3.18.24 \(\int \frac {(d+e x)^{5/2}}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx\) [1724]

Optimal. Leaf size=260 \[ -\frac {5 e^3 \sqrt {d+e x}}{64 b^3 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e^2 \sqrt {d+e x}}{32 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {5 e^4 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{7/2} (b d-a e)^{3/2} \sqrt {a^2+2 a b x+b^2 x^2}} \]

[Out]

-5/24*e*(e*x+d)^(3/2)/b^2/(b*x+a)^2/((b*x+a)^2)^(1/2)-1/4*(e*x+d)^(5/2)/b/(b*x+a)^3/((b*x+a)^2)^(1/2)+5/64*e^4
*(b*x+a)*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2))/b^(7/2)/(-a*e+b*d)^(3/2)/((b*x+a)^2)^(1/2)-5/64*e^3*(
e*x+d)^(1/2)/b^3/(-a*e+b*d)/((b*x+a)^2)^(1/2)-5/32*e^2*(e*x+d)^(1/2)/b^3/(b*x+a)/((b*x+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {660, 43, 44, 65, 214} \begin {gather*} -\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {5 e^4 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{7/2} \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)^{3/2}}-\frac {5 e^3 \sqrt {d+e x}}{64 b^3 \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)}-\frac {5 e^2 \sqrt {d+e x}}{32 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(-5*e^3*Sqrt[d + e*x])/(64*b^3*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (5*e^2*Sqrt[d + e*x])/(32*b^3*(a +
 b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (5*e*(d + e*x)^(3/2))/(24*b^2*(a + b*x)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
) - (d + e*x)^(5/2)/(4*b*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (5*e^4*(a + b*x)*ArcTanh[(Sqrt[b]*Sqrt[d
 + e*x])/Sqrt[b*d - a*e]])/(64*b^(7/2)*(b*d - a*e)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{5/2}}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=\frac {\left (b^4 \left (a b+b^2 x\right )\right ) \int \frac {(d+e x)^{5/2}}{\left (a b+b^2 x\right )^5} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (5 b^2 e \left (a b+b^2 x\right )\right ) \int \frac {(d+e x)^{3/2}}{\left (a b+b^2 x\right )^4} \, dx}{8 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (5 e^2 \left (a b+b^2 x\right )\right ) \int \frac {\sqrt {d+e x}}{\left (a b+b^2 x\right )^3} \, dx}{16 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {5 e^2 \sqrt {d+e x}}{32 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (5 e^3 \left (a b+b^2 x\right )\right ) \int \frac {1}{\left (a b+b^2 x\right )^2 \sqrt {d+e x}} \, dx}{64 b^2 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {5 e^3 \sqrt {d+e x}}{64 b^3 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e^2 \sqrt {d+e x}}{32 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {\left (5 e^4 \left (a b+b^2 x\right )\right ) \int \frac {1}{\left (a b+b^2 x\right ) \sqrt {d+e x}} \, dx}{128 b^3 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {5 e^3 \sqrt {d+e x}}{64 b^3 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e^2 \sqrt {d+e x}}{32 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {\left (5 e^3 \left (a b+b^2 x\right )\right ) \text {Subst}\left (\int \frac {1}{a b-\frac {b^2 d}{e}+\frac {b^2 x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{64 b^3 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {5 e^3 \sqrt {d+e x}}{64 b^3 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e^2 \sqrt {d+e x}}{32 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {5 e (d+e x)^{3/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{5/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {5 e^4 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{7/2} (b d-a e)^{3/2} \sqrt {a^2+2 a b x+b^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.91, size = 194, normalized size = 0.75 \begin {gather*} \frac {e^4 (a+b x)^5 \left (\frac {\sqrt {b} \sqrt {d+e x} \left (-15 a^3 e^3-5 a^2 b e^2 (2 d+11 e x)-a b^2 e \left (8 d^2+36 d e x+73 e^2 x^2\right )+b^3 \left (48 d^3+136 d^2 e x+118 d e^2 x^2+15 e^3 x^3\right )\right )}{e^4 (-b d+a e) (a+b x)^4}+\frac {15 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {-b d+a e}}\right )}{(-b d+a e)^{3/2}}\right )}{192 b^{7/2} \left ((a+b x)^2\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(e^4*(a + b*x)^5*((Sqrt[b]*Sqrt[d + e*x]*(-15*a^3*e^3 - 5*a^2*b*e^2*(2*d + 11*e*x) - a*b^2*e*(8*d^2 + 36*d*e*x
 + 73*e^2*x^2) + b^3*(48*d^3 + 136*d^2*e*x + 118*d*e^2*x^2 + 15*e^3*x^3)))/(e^4*(-(b*d) + a*e)*(a + b*x)^4) +
(15*ArcTan[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[-(b*d) + a*e]])/(-(b*d) + a*e)^(3/2)))/(192*b^(7/2)*((a + b*x)^2)^(5/2
))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(476\) vs. \(2(177)=354\).
time = 0.77, size = 477, normalized size = 1.83

method result size
default \(\frac {\left (15 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) b^{4} e^{4} x^{4}+60 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a \,b^{3} e^{4} x^{3}+15 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {7}{2}} b^{3}+90 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a^{2} b^{2} e^{4} x^{2}-73 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {5}{2}} a \,b^{2} e +73 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {5}{2}} b^{3} d +60 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a^{3} b \,e^{4} x -55 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {3}{2}} a^{2} b \,e^{2}+110 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {3}{2}} a \,b^{2} d e -55 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {3}{2}} b^{3} d^{2}+15 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a^{4} e^{4}-15 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, a^{3} e^{3}+45 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, a^{2} b d \,e^{2}-45 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, a \,b^{2} d^{2} e +15 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, b^{3} d^{3}\right ) \left (b x +a \right )}{192 \sqrt {b \left (a e -b d \right )}\, \left (a e -b d \right ) b^{3} \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}}}\) \(477\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/192*(15*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2))*b^4*e^4*x^4+60*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2
))*a*b^3*e^4*x^3+15*(b*(a*e-b*d))^(1/2)*(e*x+d)^(7/2)*b^3+90*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2))*a^2*b
^2*e^4*x^2-73*(b*(a*e-b*d))^(1/2)*(e*x+d)^(5/2)*a*b^2*e+73*(b*(a*e-b*d))^(1/2)*(e*x+d)^(5/2)*b^3*d+60*arctan(b
*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2))*a^3*b*e^4*x-55*(b*(a*e-b*d))^(1/2)*(e*x+d)^(3/2)*a^2*b*e^2+110*(b*(a*e-b*d
))^(1/2)*(e*x+d)^(3/2)*a*b^2*d*e-55*(b*(a*e-b*d))^(1/2)*(e*x+d)^(3/2)*b^3*d^2+15*arctan(b*(e*x+d)^(1/2)/(b*(a*
e-b*d))^(1/2))*a^4*e^4-15*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*a^3*e^3+45*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*a^2*b
*d*e^2-45*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*a*b^2*d^2*e+15*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*b^3*d^3)*(b*x+a)/
(b*(a*e-b*d))^(1/2)/(a*e-b*d)/b^3/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((x*e + d)^(5/2)/(b^2*x^2 + 2*a*b*x + a^2)^(5/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 423 vs. \(2 (183) = 366\).
time = 3.02, size = 861, normalized size = 3.31 \begin {gather*} \left [-\frac {15 \, {\left (b^{4} x^{4} + 4 \, a b^{3} x^{3} + 6 \, a^{2} b^{2} x^{2} + 4 \, a^{3} b x + a^{4}\right )} \sqrt {b^{2} d - a b e} e^{4} \log \left (\frac {2 \, b d + {\left (b x - a\right )} e - 2 \, \sqrt {b^{2} d - a b e} \sqrt {x e + d}}{b x + a}\right ) + 2 \, {\left (48 \, b^{5} d^{4} - {\left (15 \, a b^{4} x^{3} - 73 \, a^{2} b^{3} x^{2} - 55 \, a^{3} b^{2} x - 15 \, a^{4} b\right )} e^{4} + {\left (15 \, b^{5} d x^{3} - 191 \, a b^{4} d x^{2} - 19 \, a^{2} b^{3} d x - 5 \, a^{3} b^{2} d\right )} e^{3} + 2 \, {\left (59 \, b^{5} d^{2} x^{2} - 86 \, a b^{4} d^{2} x - a^{2} b^{3} d^{2}\right )} e^{2} + 8 \, {\left (17 \, b^{5} d^{3} x - 7 \, a b^{4} d^{3}\right )} e\right )} \sqrt {x e + d}}{384 \, {\left (b^{10} d^{2} x^{4} + 4 \, a b^{9} d^{2} x^{3} + 6 \, a^{2} b^{8} d^{2} x^{2} + 4 \, a^{3} b^{7} d^{2} x + a^{4} b^{6} d^{2} + {\left (a^{2} b^{8} x^{4} + 4 \, a^{3} b^{7} x^{3} + 6 \, a^{4} b^{6} x^{2} + 4 \, a^{5} b^{5} x + a^{6} b^{4}\right )} e^{2} - 2 \, {\left (a b^{9} d x^{4} + 4 \, a^{2} b^{8} d x^{3} + 6 \, a^{3} b^{7} d x^{2} + 4 \, a^{4} b^{6} d x + a^{5} b^{5} d\right )} e\right )}}, -\frac {15 \, {\left (b^{4} x^{4} + 4 \, a b^{3} x^{3} + 6 \, a^{2} b^{2} x^{2} + 4 \, a^{3} b x + a^{4}\right )} \sqrt {-b^{2} d + a b e} \arctan \left (\frac {\sqrt {-b^{2} d + a b e} \sqrt {x e + d}}{b x e + b d}\right ) e^{4} + {\left (48 \, b^{5} d^{4} - {\left (15 \, a b^{4} x^{3} - 73 \, a^{2} b^{3} x^{2} - 55 \, a^{3} b^{2} x - 15 \, a^{4} b\right )} e^{4} + {\left (15 \, b^{5} d x^{3} - 191 \, a b^{4} d x^{2} - 19 \, a^{2} b^{3} d x - 5 \, a^{3} b^{2} d\right )} e^{3} + 2 \, {\left (59 \, b^{5} d^{2} x^{2} - 86 \, a b^{4} d^{2} x - a^{2} b^{3} d^{2}\right )} e^{2} + 8 \, {\left (17 \, b^{5} d^{3} x - 7 \, a b^{4} d^{3}\right )} e\right )} \sqrt {x e + d}}{192 \, {\left (b^{10} d^{2} x^{4} + 4 \, a b^{9} d^{2} x^{3} + 6 \, a^{2} b^{8} d^{2} x^{2} + 4 \, a^{3} b^{7} d^{2} x + a^{4} b^{6} d^{2} + {\left (a^{2} b^{8} x^{4} + 4 \, a^{3} b^{7} x^{3} + 6 \, a^{4} b^{6} x^{2} + 4 \, a^{5} b^{5} x + a^{6} b^{4}\right )} e^{2} - 2 \, {\left (a b^{9} d x^{4} + 4 \, a^{2} b^{8} d x^{3} + 6 \, a^{3} b^{7} d x^{2} + 4 \, a^{4} b^{6} d x + a^{5} b^{5} d\right )} e\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

[-1/384*(15*(b^4*x^4 + 4*a*b^3*x^3 + 6*a^2*b^2*x^2 + 4*a^3*b*x + a^4)*sqrt(b^2*d - a*b*e)*e^4*log((2*b*d + (b*
x - a)*e - 2*sqrt(b^2*d - a*b*e)*sqrt(x*e + d))/(b*x + a)) + 2*(48*b^5*d^4 - (15*a*b^4*x^3 - 73*a^2*b^3*x^2 -
55*a^3*b^2*x - 15*a^4*b)*e^4 + (15*b^5*d*x^3 - 191*a*b^4*d*x^2 - 19*a^2*b^3*d*x - 5*a^3*b^2*d)*e^3 + 2*(59*b^5
*d^2*x^2 - 86*a*b^4*d^2*x - a^2*b^3*d^2)*e^2 + 8*(17*b^5*d^3*x - 7*a*b^4*d^3)*e)*sqrt(x*e + d))/(b^10*d^2*x^4
+ 4*a*b^9*d^2*x^3 + 6*a^2*b^8*d^2*x^2 + 4*a^3*b^7*d^2*x + a^4*b^6*d^2 + (a^2*b^8*x^4 + 4*a^3*b^7*x^3 + 6*a^4*b
^6*x^2 + 4*a^5*b^5*x + a^6*b^4)*e^2 - 2*(a*b^9*d*x^4 + 4*a^2*b^8*d*x^3 + 6*a^3*b^7*d*x^2 + 4*a^4*b^6*d*x + a^5
*b^5*d)*e), -1/192*(15*(b^4*x^4 + 4*a*b^3*x^3 + 6*a^2*b^2*x^2 + 4*a^3*b*x + a^4)*sqrt(-b^2*d + a*b*e)*arctan(s
qrt(-b^2*d + a*b*e)*sqrt(x*e + d)/(b*x*e + b*d))*e^4 + (48*b^5*d^4 - (15*a*b^4*x^3 - 73*a^2*b^3*x^2 - 55*a^3*b
^2*x - 15*a^4*b)*e^4 + (15*b^5*d*x^3 - 191*a*b^4*d*x^2 - 19*a^2*b^3*d*x - 5*a^3*b^2*d)*e^3 + 2*(59*b^5*d^2*x^2
 - 86*a*b^4*d^2*x - a^2*b^3*d^2)*e^2 + 8*(17*b^5*d^3*x - 7*a*b^4*d^3)*e)*sqrt(x*e + d))/(b^10*d^2*x^4 + 4*a*b^
9*d^2*x^3 + 6*a^2*b^8*d^2*x^2 + 4*a^3*b^7*d^2*x + a^4*b^6*d^2 + (a^2*b^8*x^4 + 4*a^3*b^7*x^3 + 6*a^4*b^6*x^2 +
 4*a^5*b^5*x + a^6*b^4)*e^2 - 2*(a*b^9*d*x^4 + 4*a^2*b^8*d*x^3 + 6*a^3*b^7*d*x^2 + 4*a^4*b^6*d*x + a^5*b^5*d)*
e)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 1.21, size = 289, normalized size = 1.11 \begin {gather*} -\frac {5 \, \arctan \left (\frac {\sqrt {x e + d} b}{\sqrt {-b^{2} d + a b e}}\right ) e^{4}}{64 \, {\left (b^{4} d \mathrm {sgn}\left (b x + a\right ) - a b^{3} e \mathrm {sgn}\left (b x + a\right )\right )} \sqrt {-b^{2} d + a b e}} - \frac {15 \, {\left (x e + d\right )}^{\frac {7}{2}} b^{3} e^{4} + 73 \, {\left (x e + d\right )}^{\frac {5}{2}} b^{3} d e^{4} - 55 \, {\left (x e + d\right )}^{\frac {3}{2}} b^{3} d^{2} e^{4} + 15 \, \sqrt {x e + d} b^{3} d^{3} e^{4} - 73 \, {\left (x e + d\right )}^{\frac {5}{2}} a b^{2} e^{5} + 110 \, {\left (x e + d\right )}^{\frac {3}{2}} a b^{2} d e^{5} - 45 \, \sqrt {x e + d} a b^{2} d^{2} e^{5} - 55 \, {\left (x e + d\right )}^{\frac {3}{2}} a^{2} b e^{6} + 45 \, \sqrt {x e + d} a^{2} b d e^{6} - 15 \, \sqrt {x e + d} a^{3} e^{7}}{192 \, {\left (b^{4} d \mathrm {sgn}\left (b x + a\right ) - a b^{3} e \mathrm {sgn}\left (b x + a\right )\right )} {\left ({\left (x e + d\right )} b - b d + a e\right )}^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

-5/64*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^4/((b^4*d*sgn(b*x + a) - a*b^3*e*sgn(b*x + a))*sqrt(-b^2*
d + a*b*e)) - 1/192*(15*(x*e + d)^(7/2)*b^3*e^4 + 73*(x*e + d)^(5/2)*b^3*d*e^4 - 55*(x*e + d)^(3/2)*b^3*d^2*e^
4 + 15*sqrt(x*e + d)*b^3*d^3*e^4 - 73*(x*e + d)^(5/2)*a*b^2*e^5 + 110*(x*e + d)^(3/2)*a*b^2*d*e^5 - 45*sqrt(x*
e + d)*a*b^2*d^2*e^5 - 55*(x*e + d)^(3/2)*a^2*b*e^6 + 45*sqrt(x*e + d)*a^2*b*d*e^6 - 15*sqrt(x*e + d)*a^3*e^7)
/((b^4*d*sgn(b*x + a) - a*b^3*e*sgn(b*x + a))*((x*e + d)*b - b*d + a*e)^4)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^{5/2}}{{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(5/2)/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2),x)

[Out]

int((d + e*x)^(5/2)/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2), x)

________________________________________________________________________________________